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Abstract. To evaluate deep learning in the assessment of breast cancer risk in which convolutional neural net-
works (CNNs) with transfer learning are used to extract parenchymal characteristics directly from full-field digital
mammographic (FFDM) images instead of using computerized radiographic texture analysis (RTA), 456 clinical
FFDM cases were included: a “high-risk” BRCA1/2 gene-mutation carriers dataset (53 cases), a “high-risk” uni-
lateral cancer patients dataset (75 cases), and a “low-risk dataset” (328 cases). Deep learning was compared to
the use of features from RTA, as well as to a combination of both in the task of distinguishing between high- and
low-risk subjects. Similar classification performances were obtained using CNN [area under the curve
ðAUCÞ ¼ 0.83; standard error ðSEÞ ¼ 0.03] and RTA (AUC ¼ 0.82; SE ¼ 0.03) in distinguishing BRCA1/2 car-
riers and low-risk women. However, in distinguishing unilateral cancer patients and low-risk women, perfor-
mance was significantly greater with CNN (AUC ¼ 0.82; SE ¼ 0.03) compared to RTA (AUC ¼ 0.73;
SE ¼ 0.03). Fusion classifiers performed significantly better than the RTA-alone classifiers with AUC values
of 0.86 and 0.84 in differentiating BRCA1/2 carriers from low-risk women and unilateral cancer patients from
low-risk women, respectively. In conclusion, deep learning extracted parenchymal characteristics from FFDMs
performed as well as, or better than, conventional texture analysis in the task of distinguishing between cancer
risk populations. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.4.041304]
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1 Introduction
Approximately one in eight women will develop breast cancer in
the United States during their lifetime.1 Breast cancer is the
second leading cause of cancer death among women.2 Currently,
mammography continues to be the most effective screening tool
for breast cancer early detection.3

There are many risk factors for developing breast cancer,
including having a family history of breast cancer and inherited
genes, such as BRCA1/2 gene mutations, as well as other
mutated genes.4 Personal risk factors include age, personal his-
tory of breast cancer, dense breasts, age at menarche, race, radi-
ation exposure, and hormonal therapy. The relationship between
mammographic parenchymal patterns and breast density and the
risk of developing breast cancer have been studied extensively
by using both visual and computerized assessment methods.5–17

Results from these studies indicated that the breast density is
strongly associated with increased risk of developing breast
cancer.8 Overall, women who are at high risk of developing
breast cancer tend to have dense breasts, and their mammo-
graphic parenchymal patterns tend to be coarse and low in
contrast.10,15

Recently, the application of deep learning in imaging has
been rapidly growing.18 Deep learning with convolutional neural
networks (CNNs) has proved to be a powerful technique in
general object recognition, learning high-level image features
directly from images, and yielding improved image classification

performance.19 Over the decades, such successes with deep
learning have also garnered the interest of researchers in medical
imaging analysis.20–22 However, the training of deep CNNs from
scratch is a challenging task, especially in the medical imaging
field, since such training requires large medical imaging datasets
with necessary human-delineated annotations, which have
proven to be difficult and time-consuming to collect. However,
a learning technique called “transfer learning” has emerged and
is being applied in medical imaging analysis.23–28 In these sit-
uations, pretrained CNNs modeled with either a nonmedical
image dataset or medical image dataset from a different modal-
ity are applied to clinical decision-making tasks with a relatively
small medical imaging dataset. Outputs extracted from layers of
the network can serve as features for various medical tasks. For
example, in the work of Samala et al.,26 pretrained deep CNNs
modeled on mammograms were used for breast mass lesion
detection on digital breast tomosynthesis images. Huynh et al.28

applied transfer learning with deep CNNs on digital mammo-
grams for the diagnostic classification of breast tumors, with
results demonstrating performance levels as current computer-
aided diagnosis (CADx) methods.

The purpose of this study is to evaluate the potential of deep
learning in the assessment of breast cancer risk, in which CNNs
extract parenchymal pattern features directly from full-field
digital mammographic (FFDM) images. The classification per-
formance based on CNN-extracted features is compared with
that based on texture features extracted from conventional
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computerized radiographic texture analysis (RTA).15,17 To the
best of our knowledge, this is the first effort to use deep learning
to (1) employ deep CNN with transfer learning in breast cancer
risk assessment and (2) compare it with conventional texture
analysis.

2 Materials and Methods

2.1 Dataset

Mammographic cases were retrospectively collected at the
University of Chicago Medical Center under an institutional
review board approved protocol with a waiver of consent
and compliance to the Health Insurance Portability and
Accountability Act.

The FFDM images used in this study were acquired with a
GE senographe 2000D system (Waukesha, Wisconsin), with
100-μm pixel size and 12-bit quantization. Regions of interest
(ROIs) of 256 × 256 pixels were manually selected from the
center breast region behind the nipple (Fig. 1). Only the cranio-
caudal view of mammographic images was used in the study.
Details regarding ROI selection can be found elsewhere.29

Four hundred and fifty six cases were included in this study,
which included two high-risk datasets and one low-risk dataset
as the control group.17 One high-risk dataset consisted of
FFDMs of women with the BRCA1/2 gene-mutation. There
were 53 mutation carriers—36 with the BRCA1 gene-mutation
and 17 with the BRCA2 gene-mutation. The average age was
40.2 years with a standard deviation of 11.8 years. The other
high-risk dataset included 75 women with unilateral breast
cancer—43 invasive ductal carcinoma, 7 invasive lobular carci-
noma, 14 ductal carcinoma in situ, 1 lobular carcinoma in situ, 2
Paget’s disease, and 8 other atypical malignant diseases. The
average age was 55.8 years old with a standard derivation of
15.0 years. The low-risk group included 328 women who
could be considered at usual risk and were undergoing screening
mammography between 2006 and 2008 at the University of
Chicago Medical Center. These women each had a lifetime

risk of <10% based on the Gail breast cancer risk assessment
model.30 The average age was 58.4 years with a standard der-
ivation of 11.9 years. The baseline characteristics of the study
populations are shown in Table 1.

Mammograms used in this study were reviewed by an expert
breast mammographer to ensure that there were no detectable
abnormalities on the images. As for the unilateral breast cancer
women, only their normal contralateral breasts were included in
the analysis.

2.2 Computerized Radiographic Texture Analysis

Computerized RTA was performed on each individual ROI for
texture feature extraction. These texture features were calculated
based on gray-level histogram analysis, neighborhood gray-tone
difference matrix,31 gray-level co-occurrence matrix,32 fractal
analysis, edge frequency analysis, and Fourier analysis to char-
acterize the mammographic parenchymal patterns.33–35 The
computer-extracted texture features served as image-based phe-
notypes to assess the image contrast, image coarseness, image
heterogeneity, as well as image local composition, which was
related to local density measure. A total of 45 texture features
were extracted from each ROI for use in subsequent analyses.
Detailed descriptions of these texture features were described
elsewhere.10,15–17,33–37 The RTA-extracted texture features
were standardized with zero mean and unit variance prior to
input to the classifier.

2.3 CNN-Based Feature Extraction

ROI images were used as input to a pretrained CNN to extract
CNN-based features.19 This CNN, i.e., the AlexNet, had been
trained on the ImageNet dataset of 1.2 million high-resolution
images and used to classify general objects into 1000 classes.19

The architecture of this pretrained CNN contained five convolu-
tional layers, three pooling layers, and three fully connected
layers.19 Given that the CNN was pretrained, our use of it
was restricted to its original architecture and input image size
of 227 × 227 pixels, and thus, 227 × 227 patches were extracted
from the center of each 256 × 256 ROI. The output from the first
fully connected layer, a vector of 4096 in length, served as the
CNN-based features, which subsequently underwent dimension
reduction by eliminating those features with zero-variance fea-
tures across the datasets. The CNN-based features were then
standardized with zero mean and unit variance prior to input
to the classifier. The feature extractions were performed on a
computer running openSUSE Linux operating system with
6-core/12-thread Intel Xeon CPU E5-2620 2.10 GHZ and
24GB memory.

2.4 Classification Based on RTA- and CNN-Based
Features

Two risk-based medical classification tasks were performed in
this study. One task was distinguishing BRCA1/2 gene-muta-
tion carriers from the low-risk control group, and the other
task was distinguishing unilateral cancer patients from the
low-risk control group.

Stepwise feature selection was performed on features
extracted from the pretrained CNN method and from the con-
ventional RTA method. The p-value of 0.05 was used for addi-
tion and removal of the features in the stepwise feature selection
step.38 The selected features were used as input to linear support

Fig. 1 Schematic diagram of conventional RTA- and deep CNN-
based methods for breast cancer risk assessment.
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vector machine (SVM) classifiers for the two classification tasks
in an iterated leave-one-case-out cross-validation analyses.
Given the moderate dataset size, for the pretrained CNN
method, only the top 20 features based on the area under the

curve (AUC) values from receiver operating characteristic
(ROC) analysis were merged with an SVM classifier.39,40

In addition, a fusion method was employed in which the clas-
sifier outputs from the RTA-based method and the pretrained

Table 1 Baseline characteristics of study population.

Variable

BRCA1/2 gene-mutation carriers versus low-risk women
(n ¼ 381)

Unilateral cancer women versus low-risk women
(n ¼ 403)

BRCA1/2
gene-mutation
carriers (n ¼ 53)

Low-risk
women

(n ¼ 328)

p-value for mutation
carriers versus low-risk

Unilateral cancer
women (n ¼ 75)

Low-risk
women

(n ¼ 328)

p-value for unilateral
cancer versus low-risk

p-value from t -test p-value from t -test

Mean age (SD) 40.2 (11.8) 58.4 (11.9) <0.0001 55.8 (15.0) 58.4 (11.9) 0.1062

Breast mean
percent density (%)

27.2 (18.2) 18.7 (17.4) 0.0013 22.5 (18.4) 18.7 (17.4) 0.0910

p-value from
chi-squared test

p-value from
chi-squared test

Race

White, non-Hispanic 49 107

<0.0001

28 107

0.063

Black, non-Hispanic 3 194 34 194

Asian 0 7 3 7

American Indian or
Alaskan native

0 1 0 1

Hispanic 1 8 1 8

Other/mixed 0 11 9 11

BI-RADS density rating

A 4 (7.5%) 34 (10.4%)

<0.0001

5 (6.7%) 34 (10.4%)

0.0452
B 18 (34.0%) 200 (61.0%) 43 (57.3%) 200 (61.0%)

C 25 (47.2%) 90 (27.4%) 22 (29.3%) 90 (27.4%)

D 6 (11.3%) 4 (1.2%) 5 (6.7%) 4 (1.2%)

Table 2 Classification performances for the conventional RTA method, CNN-based method, and fusion classifier in the task of breast cancer risk
assessment (BRCA1/2 versus low risk; unilateral cancer versus low risk) on FFDM (AUC, area under the curve; SE, standard error; CNN, convolu-
tional neutral network). Bonferroni corrections implemented given the multiple comparisons.

Classification task Classification method AUC (SE)
p-value for ΔAUC (significance level)

(95% confidence interval)

BRCA1/2 (53) versus low risk (328) Conventional RTA method 0.82 (0.03) �
�

0.6706 ð0.05Þ
½−0.0856; 0.0551�

0.3227 ð0.025Þ
½−0.0665; 0.0219�

9>>>>=
>>>>;

0.0089 ð0.0167Þ
½−0.0806; −0.0116�CNN-based method 0.83 (0.03)

Fusion classifier 0.86 (0.03)

Unilateral cancer (75) versus low risk (328) Conventional RTA method 0.73 (0.03) �
�

0.0090 ð0.025Þ
½−0.1653; −0.0236�

0.3627 ð0.05Þ
½−0.0490; 0.0179�

9>>>>=
>>>>;

< 0.0001 ð0.0167Þ
½−0.1527; −0.0639�CNN-based method 0.82 (0.03)

Fusion classifier 0.84 (0.02)
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CNN-based method were averaged in order to yield a combined
output related to the likelihood of being in a high-risk group.

2.5 Performance Evaluation and Statistical Analysis

The classification performance, in terms of distinguishing
between the high- and low-risk groups, of each classifier was
assessed using ROC analysis with the AUC as the figure of
merit.40 The statistical significance for the difference between
the classifiers’ performance was evaluated using the ROCKIT
software.41 The Holm–Bonferroni method was applied to cor-
rect for multiple comparisons.42 The kappa coefficient43 was cal-
culated to measure the agreement between the outputs from the
classifier based on RTA features and the outputs from the clas-
sifier based on CNN-extracted features.

3 Results
The computational time for the CNN-based feature extraction
was ∼0.1 s per ROI, and the computational time for the conven-
tional RTA-based feature extraction was ∼1 s per ROI.

For the RTA method, features selected from stepwise feature
selection step (six features for BRCA1/2 versus low risk; seven
features for unilateral cancer versus low risk) were merged using
an SVM classifier. From the analyses of the parenchymal
patterns, similar classification performance levels were obtained
using features extracted with the pretrained CNNs (AUC ¼
0.83; SE ¼ 0.03) and when using features extracted with the
RTA method (AUC ¼ 0.82; SE ¼ 0.03) in the task of distin-
guishing between BRCA1/2 gene-mutation carriers and the
low-risk women (Table 2 and Fig. 2). However, in the task
of distinguishing between unilateral cancer patients and the
low-risk women, classification performance was significantly
higher with the CNN-based method (AUC ¼ 0.82; SE ¼ 0.03)
as compared to the RTAmethod (AUC ¼ 0.73; SE ¼ 0.03) with
a p-value of 0.009 (Table 2 and Fig. 3).

Fair and slight kappa correlations were observed between
the classifier outputs using CNN-based features and conven-
tional RTA features in the tasks of distinguishing between
BRCA1/2 gene-mutation carriers and the low-risk women
(kappa coefficient ¼ 0.2567; p < 0.0001; Fig. 4) and between
unilateral cancer patients and the low-risk women
(kappa coefficient ¼ 0.1682; p < 0.0044; Fig. 5). AUC values

Fig. 2 ROC curves indicating the performance of RTA-based, CNN-
based, and fusion classifiers in the task of distinguishing between
BRCA1/2 gene-mutation carriers and low-risk women.

Fig. 3 ROC curves indicating the performance of RTA-based, CNN-
based, and fusion classifiers in the task of distinguishing between uni-
lateral cancer patients and low-risk women.

Fig. 4 Bland–Altman plot showing the agreement between the clas-
sifier output based on RTA features and the classifier output based on
CNN features in the task of distinguishing between BRCA1/2 gene-
mutation carriers and low-risk women. The kappa coefficient is 0.2567
(p-value < 0.0001) between the classifier output based on RTA fea-
tures and the classifier output based on CNN features.
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of 0.86 and 0.84 were obtained for the fusion classifiers in the
tasks of differentiating BRCA1/2 gene-mutation carriers from
the low-risk group and unilateral cancer patients from the
low-risk group, respectively (Table 2). The fusion classifiers per-
formed significantly better than the classifiers based solely on
the RTA features (p ¼ 0.0089 for BRCA1/2 gene-mutation car-
riers versus low-risk women; p < 0.0001 for unilateral cancer
patients versus low-risk women).

The net reclassification improvement between the RTA-
based method and the fusion classifier was indicated by the
AUC difference and the number of cases and controls correctly
reclassified (for BRCA1/2 gene-mutation carriers versus low-
risk women, ΔAUC ¼ 0.04; 2 gene-mutation carriers and 9
low-risk women correctly reclassified; for unilateral cancer
patients versus low-risk women, ΔAUC ¼ 0.11; 12 unilateral
cancer women and 5 low-risk women correctly reclassified).
However, the fusion classifiers performed comparable with
the classifiers based on CNN features alone (p ¼ 0.3227 for
BRCA1/2 gene-mutation carriers versus low-risk women; p ¼
0.3627 for unilateral cancer patients versus low-risk women).

4 Discussion and Conclusion
In this FFDM study, we performed breast cancer risk assessment
using features extracted with a conventional RTA method and
with a deep CNN method that employed transfer learning.
The results showed that the classification performances using
features extracted from deep CNNs with transfer learning and
conventional RTA method were comparable. By combining
the outputs from the CNN-based method and the RTA-based
method, a statistically significant improved performance was
achieved as compared to the RTA method in terms of distin-
guishing between high- and low-risk groups for breast cancer
risk assessment.

The fusion classifier, which combined the outputs from the
CNN- and the conventional RTA-based method, yielded
improved classification performance in the breast cancer risk
assessment. It may be due to the fact that the features extracted
from deep CNNs with transfer learning provided additional infor-
mation regarding the mammographic parenchymal patterns. This
observation was supported by the fair or slight kappa coeffi-
cients obtained between the outputs from two separate classifiers
(which had merged either the CNN- or RTA-based features).

For the features extracted using deep CNNs with transfer
learning, only the features from the first fully connected
layer were investigated in this study, due to its relatively low
dimensionality. Since this was a pretrained CNN, which had
been trained with nonmedical images, its earlier layers would
provide more generalizable features, and the features extracted
from later layers were more specific to the original classification
task. The outputs from earlier layers may be better with a larger
dataset due to their even higher dimensionalities. In the future,
both the low-level information extracted from early convolu-
tional layers and the high-level information extracted from
later layers will be investigated. In addition, a “fine-tuning”
technique will be also explored, since other studies showed
that using pretrained CNNs with fine-tuning can achieve
improved performance.27,44

The conventional RTA features are more intuitive and can be
relatively easy to relate to the characteristics of mammograms.
However, features extracted from deep CNNs are not intuitive
and difficult to interpret in terms of their clinical relevance. This
needs to be further investigated.

There are several limitations in this study. The dataset size
was relatively small (456 cases), which limited us to use a pre-
trained CNN as merely a feature extractor. A larger dataset is
needed to perform fine-tuning. Also, the small dataset only
allows us to perform a leave-one-case-out cross-validation evalu-
ation. Given a larger dataset, splitting the dataset into training,
validation, and testing would be more ideal for parameter opti-
mization, model building, and robust performance evaluation.

In this preliminary study, we demonstrated that using fea-
tures extracted with pretrained CNNs can achieve comparable
performance to that using features extracted from a conventional
RTA method in breast cancer risk assessment. The features
extracted using CNNs may contain additional information in
characterizing mammographic parenchymal patterns to the con-
ventional RTA features. Deep learning has potential to help cli-
nicians in assessing mammographic parenchymal patterns for
breast cancer risk assessment.
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Fig. 5 Bland–Altman plot showing the agreement between the clas-
sifier output based on RTA features and the classifier output based on
CNN features in the task of distinguishing between unilateral cancer
patients and low-risk group. The kappa coefficient is 0.1682
(p-value ¼ 0.0044) between the classifier output based on RTA fea-
tures and the classifier output based on CNN features.
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